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Abstract. It is largely unknown how the properties of the somatosen-
sory system relate to the properties of naturally occurring whisker deflec-
tions. Here, we analyse representations of simulated neurons that have
optimally sparse activity in response to recorded reflections of a rat
whisker from surfaces of everyday objects. These representations pre-
dict a number of interesting properties of neurons in the somatosensory
system that have not been measured yet.

1 Introduction

For about a century it has been known that the vibrissae or whiskers provide an
important source of information to rats and other rodents [1]. In particular, rats
can distinguish surface properties purely on the basis of cues from their whiskers
[2][3]. Rats can furthermore use their whiskers to discriminate objects [4]. As
the rat explores its environment, its whiskers are moved over various shapes and
surfaces. The whisker deflections caused by these stimulations define the input
to the rat’s somatosensory system. Although a large number of studies analyses
the electrophysiology in this system [5][6][7], the relevant features of its input
have remained unknown.

It is evidently difficult to analyse complex natural stimuli. Fortunately, many
studies have addressed the properties of natural stimuli in the visual [8][9] and
the auditory domain [10][11]. Simulated neurons with optimally sparse activity
reproduce much of the properties of neurons in the early visual and auditory
areas. Optimally sparse [12] in this context means that the neurons often have an
activity close to zero and then sometimes have very high activity. Drawing upon
this inspiration, we analyse the somatosensory system with similar methods.

In this paper, we examine the statistics of natural stimuli to the somatosen-
sory system. To do so, we built an artificial whisker system, with a real rat
whisker attached to a capacitor microphone. This is in contrast to previous
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robotics studies, that used simple whisking devices measuring distances or con-
tact only [13][14][15], but do not capture the rich information picked up by
natural whiskers.

We analyse if the neurons in the vibrissal system can also be understood in
terms of leading to sparse activity in response to these natural inputs. The data
coming from our artificial whisker system is analysed in the spectro-temporal
domain. Simulated neurons optimally coding for these data are analysed and
generate predictions about neurons in the somatosensory system.

2 The Artificial Whisker System

2.1 Hardware

The desired artificial whisker should be functionally comparable to a natural
rat whisker and therefore be sensitive to small amplitude deflections and fast
oscillations. We attached a rat whisker to the diaphragm of a capacitor mi-
crophone using cyanoacrylic super-glue. The change in voltage resulting from
whisker deflections is preamplified and digitally recorded. This technique allows
us to measure fast oscillations of the whisker even if the amplitude is very low.
A schematic drawing of the device is shown in figure 1 left.
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Fig. 1. Left: Basic schematic of the artificial whisker with a capacitor microphone
being its main component. The deflection of the membrane is measured by the change
of capacitance. The related change of voltage is fed into a preamplifier circuit. Right:
Experimental device used to perform some of the experiments described and analysed
in this paper.

2.2 Data Obtained

We consider two distinct datasets. Sandpaper data set: we recorded the deflec-
tions of whiskers that touched a cylinder rotating with constant speed covered
with sandpaper (see figure 1 right). We used a set of natural rat whiskers of differ-
ent length (37mm-5Imm) and distance (20mm-45mm) to the cylinder. Natural
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object data set: we recorded deflections from a single whisker being manually
swept over nine objects and surfaces (fur, leaves, etc.). Data are sampled at
4096Hz. Typical recordings from the two data sets can be seen in figure 2.
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Fig. 2. Data received directly from the artificial whisker system while moving the

whisker over an object (natural object data set, left) or while rotating a cylinder covered
with sandpaper along the whisker (sandpaper data set, right).

3 Processing Methods

3.1 Representation of the Data

Time varying data are conveniently analysed in spectrogram space, the space
spanned by frequency and time. This representation is particularly useful for
the whisker system since rats are able to discriminate surfaces of different spa-
tial frequencies [3]. We thus transform the input signals into spectrograms using
methods adapted to the analysis of temporally changing signals which are also
used for auditory processing. They are available as a matlab package (“NSL
Tools” [16]). The resolution on the tonotopic axis is 64 points, covering a fre-
quency range from 4.7Hz to 185.5Hz. In figure 3, three typical samples of such
transformed whisker data (recorded with the natural object data set) can be
seen. These spectrograms show that whisker deflections lead to a largely con-
served frequency-time response. We cut the spectrogram data in windows of
250ms each, overlapping by 10ms. The temporal resolution of these windows is
25 points.

3.2 Spectrotemporal Receptive Fields

For the learning studies, the spectrograms are first compressed by a principal
component analysis (PCA) using the first npca = 100 principal components
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Fig. 3. Sample spectrogram of whisker data recorded with the natural object data set.
The frequency axis logarithmically ranges from 4.7Hz to 185.5Hz while time runs from
0 to 1000ms.

(out of 25 x 64 = 1600). These components capture more than 96 per cent of the
variance. We subsequently assemble a set of 2025 samples of natural object data
spectrograms, and a second set of 1050 samples of sandpaper data spectrograms.

A set of 32 simulated neurons is trained to optimally code for each of these
data.

The activity of the neurons is defined as

where A; is the activity, W; is the weight vector of the neuron i. I(t) is the
input vector of length npc 4 shared by all neurons. The weights connecting each
neuron to the spectrogram data, are optimised by scaled gradient descent to
minimise the following loss function:

g/total = g/cauehy + Wstd + Wdecorr ) with:

- CauChy: wcauchy = %Zl < ln(l + Az(t)2) >t
with < - >; being the average over time ¢

— Standard deviation: ¥4y = %Zi((mi —1)2

4 Z] c3
(—2)(n=1) °
with C' = cov(A) being the n X n covariance matrix of A

— Decorrelation: Ygeeorr =

While the W,quchy measures the sparseness of the responses, the two other loss
functions ensure the standard criterion used in Independent Component Analysis
(ICA) and sparse coding studies that the output variances should be unitary and
the output covariances should be vanishing.
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4 Results

Simulated neurons are optimised to sparsely encode naturally occurring whisker
deflections. Figure 4 shows the general properties of the resulting spectrotempo-
ral receptive fields. Most of the analysed neurons are localised in time, and some
are also localised in frequency (figure 4, plots A, F, H, I, and J).

A B C D E
F G H I J

Fig. 4. Five samples each (top row: sandpaper data set, bottom row: objects data
set) of typical colour-coded spectrotemporal receptive fields out of 32 neurons. y-axis:
frequency (4.7Hz to 185.5Hz), z-axis: time (0 to 250ms).

To further quantify this property, we introduce two measures of localisedness
(figure 5). For the analysis, we calculate the average energy over time, and the
frequency for each receptive field. We also measure the width of the maximum
peak at half the peak value for time localisation, and the octaves log(f;/fn)
for frequency localisation. More than 87 per cent of the receptive fields from
the object data set have a localisation measure in time of less than 100ms. The
receptive fields from the sandpaper data set have a localisation measure in time
of less than 100ms in only 68 per cent. The percentage of neurons with a tuning
width of less than 3 octaves, and thus selective to frequency, is 43 per cent in
the object data set and 46 per cent in the sandpaper data set

This is in analogy to sparse simulated neurons in the visual system that
obtain localised receptive fields in space and orientation [8]. In addition to this,
they are often tuned to changes or even modulations of the energy of the input
over time.

This property might be useful for tactile texture recognition. There is some
influence of the choice of the stimulus set. The sandpaper data show a stronger
degree of modulation selectivity while the natural textures data show a stronger
specificity to frequency. To which degree these properties depend on specific
properties of the datasets remains an issue for further research.
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Fig. 5. Histograms showing the localisedness of the spatiotemporal receptive fields for
frequency in octaves (top row) and for time in ms (bottom row) for both data sets.

5 Discussion

Our simulations investigate the optimal coding of naturally occurring whisker
deflections. We proceed with the discussion of the properties of the whisker
representation in the rodent brain, and based on our results we make predictions
of the properties of neurons that have not been measured yet in physiological
experiments.

5.1 Choice of the Representation

It is not clear which stimulus features allow rats to perform discrimination tasks
involving high spatial frequencies and neither are there physiological studies that
analyse the time frequency properties of neurons in the somatosensory system.
Since the waveforms of high frequency signals are not a good indicator of their
properties (in speech for example, we can scramble the phase spectrum without
changing the perceived sounds) a different representation is necessary. Auditory
and somatosensory systems share similar temporal stimulus properties (data not
shown). Drawing upon this inspiration, we thus represent the whisker data as
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spectrograms the same way auditory data are typically represented. By training
the simulated neurons to have sparse activities on these inputs, we extract salient
features from the obtained natural stimuli.

5.2 Physiological Studies

Biological studies have focused mainly on low-frequency stimulation of one or
more whiskers and have studied neuronal parameters such as latency of thala-
mic response [17], cortical response [18][19], and ON or OFF response magnitude
[20][21]. The stimulations used for most biological studies consist of air puffs or
ramp-hold deflections, either in single trials or with frequencies around the nat-
ural whisking frequency of 8Hz. There are no published studies that investigate
in the response pattern of neurons in the somatosensory system to stimuli of
frequencies between 20 and 200Hz. There is however some preliminary evidence
that neurons show complex behaviour in this range (R.S. Petersen, M.E. Dia-
mond, personal communications). The lack of experimental data is particularly
surprising since it is known that rats can discriminate surfaces and textures with
high spatial frequency, translating into high frequency of whisker stimulations
[3].

5.3 Predictions

Our study investigates how such frequencies of obvious behavioural relevance can
optimally be encoded by neural representations. Simulated neurons optimally
coding for natural stimuli can be viewed as predictions of the, yet unmeasured,
neural properties at higher stimulation frequencies.

This study predicts that some neurons in the somatosensory system should
not code for the frequency of the whiskers stimulation but rather code for mod-
ulation frequencies. Such cells might actually be better detectors for surface
texture properties than cells that are just localised in spectrum. Most of them
should have temporally localised responses and show some selectivity to stimula-
tion frequency. These predictions can be tested in experimental studies probing
the somatosensory system with spectrotemporal patterns.
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