Robot Behaviour - Lernen

V.V. Hafner, 05/2006



DAC - Distributed Adaptive Control

[eine genaue Beschreibung ist im Buch ,Understanding Intelligence® zu finden]

Motor Action

Collision
Layer

Proximity
Layer

[Pfeifer, R. et al. (1992)]



DAC

The original version was implemented on a real Khepera robot.

The DAC Control Architecture is a neural network with three layers:
* proximity layer,

* collision layer

* motor action layer

Each proximity sensor is connected to a node in the proximity layer. Each collision sensor is connected to a
node in the Collision layer. The nodes of the proximity layer have continuous sigmoid activation functions
and are connected uni-directionally to the nodes of the collision layer. The nodes of the collision layer have
binary activation and have hardwired connections to the motor layer.

Using Hebbian learning as the robot runs, the network will strengthen the connections between the collision
layer nodes and proximity layer nodes which are active at the same time. As the network trains, the robot will
learn to avoid obstacles as the proximity sensors will activate the collision layer nodes and in effect "predict'
collisions before they can occur, so the robot can turn away.



Features

* hard-wired reflexes

* forgetting

* development of robot behaviour over time (draw)
* target detectors (light sensor)

* no obstacles, no light -> move forward



Pseudo Code

Main Control Loop:

1. For each node in PROXIMITY layer: 3. For each node in MOTOR ACTION layer:
Proximity-Node-Input: Motor-Node-Input:
IR-SENSOR value Collision-Node-Output * Connection weight to motor node (for all collision-nodes)
+ DEFAULT-MOTOR value
Proximity-Node-Output:
If Proximity-Node-Input > 1, output 1 Motor-Node-Output:
If Proximity-Node_input < 0, output 0 output Normalized Motor-Node-Input --> set MOTOR SPEEDs

else output Proximity-Node-Input
4. HEBBIAN LEARNING:

2. For each node in COLLISION layer:
For each connection from PROXIMITY to COLLISION layer:

Collision-Node-Input:

Proximity-node-output * Connection Weight Learning:

to collision node (for all proximity-nodes) If the connected Proximity-Node and Collision-Node are activated at the same time:
+ COLLISION-SENSOR value Increase connection weight (proportional to their levels of activation)
Collision-Node-Output: Forgetting:
if Collision-Node-Input > 0.3, output 1 Decrease connection weight (proportional to average activation in collision layer)

else output 0



Pavlovsches Lernen




